


## THDT58S

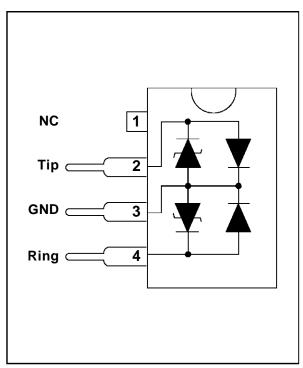
## TRISIL FOR SLIC PROTECTION

#### **FEATURES**

- CROWBAR PROTECTION
- DUAL ASYMETRICAL TRANSIENT SUPPRESSOR
- PEAK PULSE CURRENT:
  - $-I_{PP} = 75 \text{ A}, 10/1000 \text{ }\mu\text{s}.$
- HOLDING CURRENT = 150 mA min
- BREAKDOWN VOLTAGE = 58 V.
- BREAKOVER VOLTAGE = 80V max.



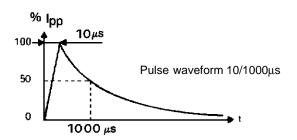
#### **DESCRIPTION**


This device has been especially designed to protect subscriber line card interfaces (SLIC) against transient overvoltages.

Its ion-implanted technology confers excellent electrical characteristics on it.

This is why this device easily fits the main protection standards which are related to the overvoltages on telecom lines.

This product is compatible with TO202 and TO220 packages.

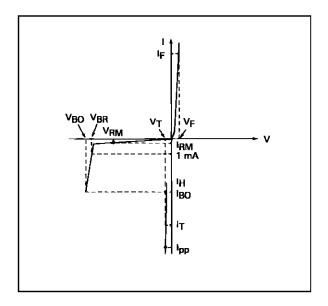

#### SCHEMATIC DIAGRAM



# IN ACCORDANCE WITH FOLLOWING STANDARDS:

## **ABSOLUTE RATINGS** (limiting values) (-40°C $\leq$ T<sub>amb</sub> $\leq$ + 85°C)

| Symbol                 | Parameter                                      | Value                  | Unit      |   |
|------------------------|------------------------------------------------|------------------------|-----------|---|
| lpp                    | Peak pulse current                             | 10/1000 μs<br>8/20 μs  | 75<br>150 | А |
| ITSM                   | Non repetitive surge peak on-state current     | 30                     | А         |   |
| IFSM                   | Non repetitive surge peak forward current      | tp = 20 ms             | 30        | А |
| di/dt                  | Critical rate of rise of off-state current     | 100                    | A/μs      |   |
| dv/dt                  | Critical rate of rise of off-state voltage     | 5                      | KV/μs     |   |
| T <sub>stg</sub><br>Tj | Storage and operating junction temperature ran | - 40 to + 150<br>+ 150 | °C<br>°C  |   |
| TL                     | Maximum lead temperature for soldering during  | 260                    | °C        |   |




#### THERMAL RESISTANCE

| Symb                | ы                    | Parameter | Value | Unit |
|---------------------|----------------------|-----------|-------|------|
| R <sub>th</sub> (j- | a) Junction-to-ambie | nt        | 70    | °C/W |

#### **ELECTRICAL CHARACTERISTICS**

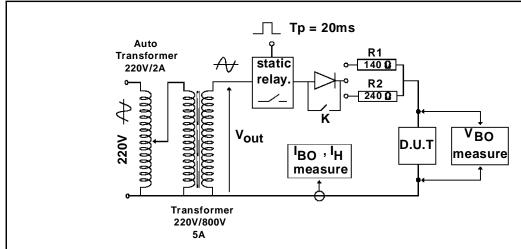
| Symbol                 | Parameter            |  |  |
|------------------------|----------------------|--|--|
| V <sub>RM</sub>        | Stand-off voltage    |  |  |
| VBR                    | Breakdown voltage    |  |  |
| VBO                    | Breakover voltage    |  |  |
| lн                     | Holding current      |  |  |
| VT                     | On-state voltage     |  |  |
| VF                     | Forward Voltage Drop |  |  |
| I <sub>BO</sub>        | Breakover current    |  |  |
| IPP Peak pulse current |                      |  |  |



#### PARAMETER RELATED TO THE DIODE LINE/GND

| Symbol | Test conditions                             | Value | Unit |
|--------|---------------------------------------------|-------|------|
| VF     | Square pulse, $tp = 500 \mu s  IF = 5  A$ . | 5     | V    |

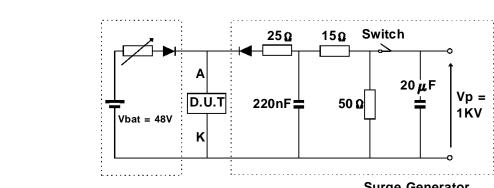
### PARAMETERS RELATED TO THE PROTECTION THYRISTOR


| Туре    | IRM @      | <sup>®</sup> V <sub>RM</sub> | VBR | @ <b>I</b> R | VBO | @     | ВО  | lн    | ٧T    | С     |
|---------|------------|------------------------------|-----|--------------|-----|-------|-----|-------|-------|-------|
|         | max        |                              | min |              | max | min   | max | min   | max   | max   |
|         |            |                              |     |              |     | note1 |     | note1 | note2 | note3 |
|         | μ <b>Α</b> | V                            | ٧   | mA           | V   | mA    | mA  | mA    | ٧     | рF    |
| THDT58S | 10         | 56                           | 58  | 1            | 80  | 150   | 800 | 150   | 5     | 400   |

All parameters tested at 25°C, except where indicated

Note 1 : See the reference test circuit for I<sub>H</sub>, I<sub>BO</sub> and V<sub>BO</sub> parameters. Note 2 : Square pulse Tp =  $500 \, \mu s$  - I<sub>T</sub> = 5A. Note 3 : V<sub>R</sub> = 1V, F = 1MHz.




#### REFERENCE TEST CIRCUIT FOR I<sub>H</sub>, I<sub>BO</sub> and V<sub>BO</sub> parameters :

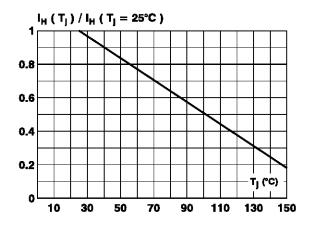


#### **TEST PROCEDURE:**

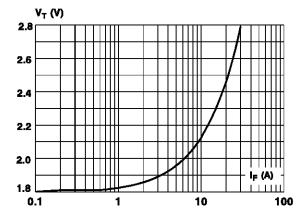
- Pulse Test duration (Tp = 20ms):
  - For Bidirectional devices = Switch K is closed
  - For Unidirectional devices = Switch K is open.
- Vour Selection
  - Device with V<sub>BR</sub> ≤ 150 Volt
    - Vout = 250 V<sub>RMS</sub>,  $R_1$  = 140  $\Omega$ .
  - Device with  $V_{BR} \ge 150 \text{ Volt}$ 
    - Vout = 480 V<sub>RMS</sub>,  $R_2$  = 240  $\Omega$ .

#### FUNCTIONAL HOLDING CURRENT (IH) TEST CIRCUIT = GO - NOGO TEST.

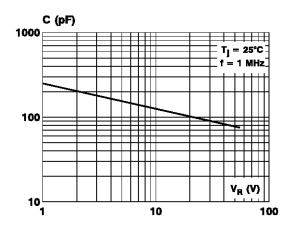



Surge Generator  $10/700 \mu sec$ Vp = 1KV / Ipp = 25A

This is a GO-NOGO Test which allows to confirm the holding current (I<sub>H</sub>) level in a functional test circuit. This test can be performed if the reference test circuit can't be implemented.


#### **TEST PROCEDURE:**

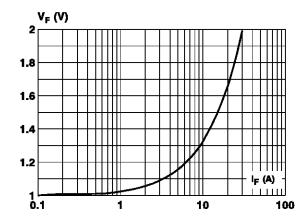
- 1) Adjust the current level at the I<sub>H</sub> value by short circuiting the AK of the D.U.T.
  - 2) Fire the D.U.T with a surge Current : lpp = 25A,  $10/700 \mu s$ .
  - 3) The D.U.T will come back to the OFF-State withing a duration of 50 ms max.


**Figure 1**: Relative variation of holding current versus junction temperature.



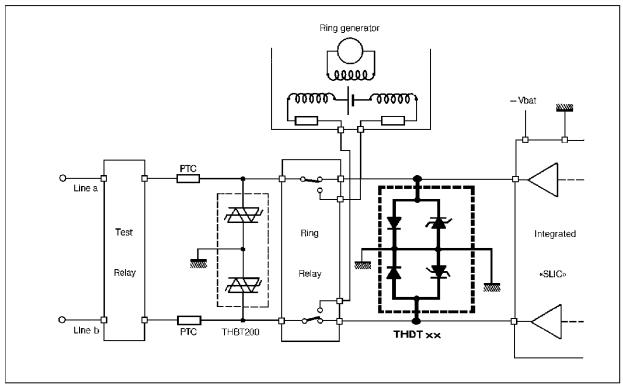

**Figure 3**: Peak on state voltage versus peak on state current (typical values).



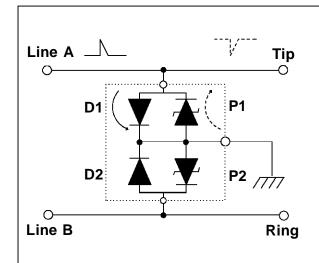

**Figure 5**: Capacitance versus reverse applied voltage (typical values).



**Figure 2**: Non repetitive surge peak on state current versus number of cycles (1 cycle = 20 ms.




**Figure 4**: Peak forward voltage drop versus peak forward current (typical values).



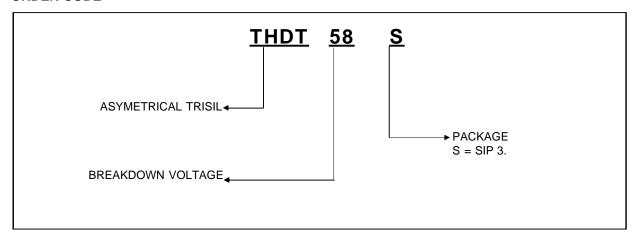

#### **APPLICATION CIRCUIT**

#### Typical slic protection concept



#### **FUNCTIONAL DESCRIPTION**



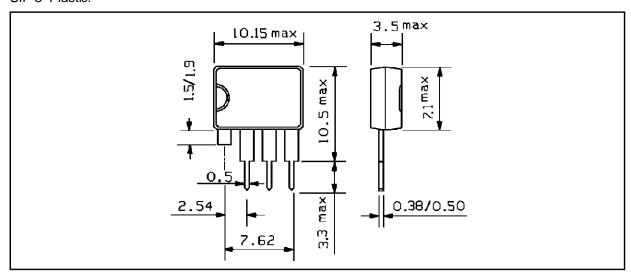

#### Line A Protection =

- For positive Surges versus GND, the diode D1 will conduct
- For negative Surges versus GND, the Protection device P1 will trigger at a maximum voltage equal to the V<sub>BO</sub>.

#### Line B Protection =

- For Surges on line B, the operating mode is the same, D2 or P2 is activated.

#### **ORDER CODE**




#### **MARKING**

| Package | Туре    | Marking |  |  |
|---------|---------|---------|--|--|
| SIP3    | THDT58S | THDT58S |  |  |

## PACKAGE MECHANICAL DATA (in millimeters)

SIP 3 Plastic.



Packaging: Products supplied in antistatic tubes.

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of  $l^2C$  Components by SGS-THOMSON Microelectronics, conveys a licence under the Philips  $l^2C$  Patent. Rights to use these components in an  $l^2C$  system, is grantede provided that the system conforms to the  $l^2C$  Standard Specification as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

